Scientists develop microscopic gas-filled spheres of silica to locate breast cancers

September 09, 2015

"Instead of just using a Geiger-counterlike device to say you're getting closer to the radioactive seed, you could actually see where to carve," said Andrew Kummel, professor of chemistry. The increased precision should help surgeons avoid the need for second surgeries.

"By outlining the tumor more completely in multiple directions, the particles could potentially help surgeons remove non-palpable tumors in a single operation," said Sarah Blair, a surgeon at Moores UCSD Cancer Center. "They will definitely make the operation more comfortable for patients."

The researchers think the ultrasound pressure waves burst the microbubbles. "They're thin, fragile balls of porous glass, like Christmas tree ornaments," Kummel said. "The shell is just one two-hundredth of the diameter of the ball. When it breaks, the gas squirts out. Doppler ultrasound detects that movement."

Nano-scale silica microbubbles, which the team reports in this paper as well, are too small to remain in place, but might drain from a cancerous site to help identify which lymph nodes are most likely to contain stray cells that could help the cancer spread.

The current study demonstrates the feasibility of the technology in tissue samples. Tests in animal models are underway, and toxicology studies must also be completed before clinical trials in humans could begin.

Source: University of California -- San Diego